New upstream version 3.1.1
This commit is contained in:
parent
4e9934e5ec
commit
e7b41df57b
229 changed files with 57000 additions and 12055 deletions
33
legacy/README.md
Normal file
33
legacy/README.md
Normal file
|
@ -0,0 +1,33 @@
|
|||
# Removed Features
|
||||
|
||||
This folder contains a list N2N legacy features which have been dropped due to
|
||||
maintainance cost versus effective use and benefits.
|
||||
|
||||
Multiple Transops
|
||||
-----------------
|
||||
|
||||
N2N used to initialize all the available transops and use the "tick" function of
|
||||
the transops to decide which transop to use before sending a packet. This however
|
||||
has the following problems:
|
||||
|
||||
- It only works with the keyfile, whereas with normal encryption we inizialize and
|
||||
keep structures that we don't need.
|
||||
- It is unfeasable as an edge node is required to implement all the transops in order
|
||||
to properly talk with other edge nodes (via keyfile).
|
||||
- It rises the complexity of the code.
|
||||
- It is not clear which transop will be used.
|
||||
- Mixing multiple encyptions together is not necessarily a good idea to improve security
|
||||
as a vulnerability in at least one encryption method will leak some information.
|
||||
|
||||
Keyfile and Key Rotation
|
||||
------------------------
|
||||
|
||||
The keyfile mechanism allowed N2N users to specify a keyfile to be used to periodically
|
||||
rotate keys and encryption methods. However, it has the following problems:
|
||||
|
||||
- This feature is obscure for most of the users and poorly documented.
|
||||
- It is tightly integrated in the core whereas it is used by only a few people (if any).
|
||||
|
||||
In conclusion the main problem is the complexity that it adds to the code. In a possible
|
||||
future rework this could be integrated as an extention (e.g. a specific trasop) without
|
||||
rising the core complexity.
|
103
legacy/edge_keyschedule.c
Normal file
103
legacy/edge_keyschedule.c
Normal file
|
@ -0,0 +1,103 @@
|
|||
typedef struct n2n_tostat {
|
||||
uint8_t can_tx; /* Does this transop have a valid SA for encoding. */
|
||||
n2n_cipherspec_t tx_spec; /* If can_tx, the spec used to encode. */
|
||||
} n2n_tostat_t;
|
||||
|
||||
typedef uint32_t n2n_sa_t; /* security association number */
|
||||
typedef int (*n2n_transaddspec_f)( struct n2n_trans_op * arg,
|
||||
const n2n_cipherspec_t * cspec );
|
||||
|
||||
typedef n2n_tostat_t (*n2n_transtick_f)( struct n2n_trans_op * arg,
|
||||
time_t now );
|
||||
|
||||
/** Read in a key-schedule file, parse the lines and pass each line to the
|
||||
* appropriate trans_op for parsing of key-data and adding key-schedule
|
||||
* entries. The lookup table of time->trans_op is constructed such that
|
||||
* encoding can be passed to the correct trans_op. The trans_op internal table
|
||||
* will then determine the best SA for that trans_op from the key schedule to
|
||||
* use for encoding. */
|
||||
|
||||
static int edge_init_keyschedule(n2n_edge_t *eee) {
|
||||
#define N2N_NUM_CIPHERSPECS 32
|
||||
|
||||
int retval = -1;
|
||||
ssize_t numSpecs=0;
|
||||
n2n_cipherspec_t specs[N2N_NUM_CIPHERSPECS];
|
||||
size_t i;
|
||||
time_t now = time(NULL);
|
||||
|
||||
numSpecs = n2n_read_keyfile(specs, N2N_NUM_CIPHERSPECS, eee->conf.keyschedule);
|
||||
|
||||
if(numSpecs > 0)
|
||||
{
|
||||
traceEvent(TRACE_NORMAL, "keyfile = %s read -> %d specs.\n", optarg, (signed int)numSpecs);
|
||||
|
||||
for (i=0; i < (size_t)numSpecs; ++i)
|
||||
{
|
||||
n2n_transform_t idx = (n2n_transform_t) specs[i].t;
|
||||
if(idx != eee->transop.transform_id) {
|
||||
traceEvent(TRACE_ERROR, "changing transop in keyschedule is not supported");
|
||||
retval = -1;
|
||||
}
|
||||
|
||||
if(eee->transop.addspec != NULL)
|
||||
retval = eee->transop.addspec(&eee->transop, &(specs[i]));
|
||||
|
||||
if (0 != retval)
|
||||
{
|
||||
traceEvent(TRACE_ERROR, "keyschedule failed to add spec[%u] to transop[%d].\n",
|
||||
(unsigned int)i, idx);
|
||||
|
||||
return retval;
|
||||
}
|
||||
}
|
||||
|
||||
n2n_tick_transop(eee, now);
|
||||
}
|
||||
else
|
||||
traceEvent(TRACE_ERROR, "Failed to process '%s'", eee->conf.keyschedule);
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
#if 0
|
||||
if(recvlen >= 6)
|
||||
{
|
||||
if(0 == memcmp(udp_buf, "reload", 6))
|
||||
{
|
||||
if(strlen(eee->conf.keyschedule) > 0)
|
||||
{
|
||||
if(edge_init_keyschedule(eee) == 0)
|
||||
{
|
||||
msg_len=0;
|
||||
msg_len += snprintf((char *)(udp_buf+msg_len), (N2N_PKT_BUF_SIZE-msg_len),
|
||||
"> OK\n");
|
||||
sendto(eee->udp_mgmt_sock, udp_buf, msg_len, 0/*flags*/,
|
||||
(struct sockaddr *)&sender_sock, sizeof(struct sockaddr_in));
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
case'K':
|
||||
{
|
||||
if(conf->encrypt_key) {
|
||||
traceEvent(TRACE_ERROR, "Error: -K and -k options are mutually exclusive");
|
||||
exit(1);
|
||||
} else {
|
||||
strncpy(conf->keyschedule, optargument, N2N_PATHNAME_MAXLEN-1);
|
||||
/* strncpy does not add NULL if the source has no NULL. */
|
||||
conf->keyschedule[N2N_PATHNAME_MAXLEN-1] = 0;
|
||||
|
||||
traceEvent(TRACE_NORMAL, "keyfile = '%s'\n", conf->keyschedule);
|
||||
}
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
printf("-K <key file> | Specify a key schedule file to load. Not with -k.\n");
|
||||
#endif
|
44
legacy/gen_keyfile.py
Executable file
44
legacy/gen_keyfile.py
Executable file
|
@ -0,0 +1,44 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
# (c) 2009 Richard Andrews <andrews@ntop.org>
|
||||
|
||||
# Program to generate a n2n_edge key schedule file for twofish keys
|
||||
# Each key line consists of the following element
|
||||
# <from> <until> <txfrm> <opaque>
|
||||
#
|
||||
# where <from>, <until> are UNIX time_t values of key valid period
|
||||
# <txfrm> is the transform ID (=2 for twofish)
|
||||
# <opaque> is twofish-specific data as follows
|
||||
# <sec_id>_<hex_key>
|
||||
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import random
|
||||
|
||||
NUM_KEYS=30
|
||||
KEY_LIFE=300
|
||||
KEY_LEN=16
|
||||
|
||||
now=time.time()
|
||||
start_sa=random.randint( 0, 0xffffffff )
|
||||
|
||||
random.seed(now) # note now is a floating point time value
|
||||
|
||||
def rand_key():
|
||||
key=str()
|
||||
for i in range(0,KEY_LEN):
|
||||
key += "%02x"%( random.randint( 0, 255) )
|
||||
|
||||
return key
|
||||
|
||||
for i in range(0,NUM_KEYS):
|
||||
from_time = now + (KEY_LIFE * (i-1) )
|
||||
until_time = now + (KEY_LIFE * (i+1) )
|
||||
key = rand_key()
|
||||
sa_idx = start_sa + i
|
||||
transform_id = random.randint( 2, 3 )
|
||||
|
||||
sys.stdout.write("%d %d %d %d_%s\n"%(from_time, until_time, transform_id,sa_idx, key) )
|
||||
|
||||
|
216
legacy/n2n_keyfile.c
Normal file
216
legacy/n2n_keyfile.c
Normal file
|
@ -0,0 +1,216 @@
|
|||
/**
|
||||
* (C) 2007-18 - ntop.org and contributors
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not see see <http://www.gnu.org/licenses/>
|
||||
*
|
||||
*/
|
||||
|
||||
#include "n2n.h"
|
||||
#include "n2n_keyfile.h"
|
||||
#include <errno.h>
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#ifdef WIN32
|
||||
char *strsep( char **ppsz_string, const char *psz_delimiters )
|
||||
{
|
||||
char *p;
|
||||
char *psz_string = *ppsz_string;
|
||||
if( !psz_string )
|
||||
return NULL;
|
||||
|
||||
p = strpbrk( psz_string, psz_delimiters );
|
||||
if( !p )
|
||||
{
|
||||
*ppsz_string = NULL;
|
||||
return psz_string;
|
||||
}
|
||||
*p++ = '\0';
|
||||
|
||||
*ppsz_string = p;
|
||||
return psz_string;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/* Parse hex nibbles in ascii until a non-nibble character is found. Nibble
|
||||
* characters are 0-9, a-f and A-F.
|
||||
*
|
||||
* Return number of bytes parsed into keyBuf or a negative error code.
|
||||
*/
|
||||
ssize_t n2n_parse_hex( uint8_t * keyBuf,
|
||||
size_t keyLen,
|
||||
const char * textKey,
|
||||
size_t textLen)
|
||||
{
|
||||
ssize_t retval=0;
|
||||
uint8_t * pout=keyBuf;
|
||||
size_t octet=0;
|
||||
const char * textEnd;
|
||||
const char * pbeg;
|
||||
|
||||
textEnd = textKey+textLen;
|
||||
pbeg=textKey;
|
||||
|
||||
while ( ( pbeg + 1 < textEnd ) && ( retval < (ssize_t)keyLen ) )
|
||||
{
|
||||
if ( 1 != sscanf( pbeg, "%02x", (unsigned int*)&octet ) )
|
||||
{
|
||||
retval=-1;
|
||||
break;
|
||||
}
|
||||
|
||||
*pout = (octet & 0xff);
|
||||
++pout;
|
||||
++retval;
|
||||
pbeg += 2;
|
||||
}
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
static int parseKeyLine( n2n_cipherspec_t * spec,
|
||||
const char * linein )
|
||||
{
|
||||
/* parameters are separated by whitespace */
|
||||
char line[N2N_KEYFILE_LINESIZE];
|
||||
char * lp=line;
|
||||
const char * token;
|
||||
strncpy( line, linein, N2N_KEYFILE_LINESIZE );
|
||||
|
||||
memset( spec, 0, sizeof( n2n_cipherspec_t ) );
|
||||
|
||||
/* decode valid_from time */
|
||||
token = strsep( &lp, DELIMITERS );
|
||||
if ( !token ) { goto error; }
|
||||
spec->valid_from = atol(token);
|
||||
|
||||
/* decode valid_until time */
|
||||
token = strsep( &lp, DELIMITERS );
|
||||
if ( !token ) { goto error; }
|
||||
spec->valid_until = atol(token);
|
||||
|
||||
/* decode the transform number */
|
||||
token = strsep( &lp, DELIMITERS );
|
||||
if ( !token ) { goto error; }
|
||||
spec->t = atoi(token);
|
||||
|
||||
/* The reset if opaque key data */
|
||||
token = strsep( &lp, DELIMITERS );
|
||||
if ( !token ) { goto error; }
|
||||
strncpy( (char *)spec->opaque, token, N2N_MAX_KEYSIZE );
|
||||
spec->opaque_size=strlen( (char *)spec->opaque);
|
||||
|
||||
return 0;
|
||||
|
||||
error:
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
#define SEP "/"
|
||||
|
||||
|
||||
int validCipherSpec( const n2n_cipherspec_t * k,
|
||||
time_t now )
|
||||
{
|
||||
if ( k->valid_until < k->valid_from ) { goto bad; }
|
||||
if ( k->valid_from > now ) { goto bad; }
|
||||
if ( k->valid_until < now ) { goto bad; }
|
||||
|
||||
return 0;
|
||||
|
||||
bad:
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Read key control file and return the number of specs stored or a negative
|
||||
* error code.
|
||||
*
|
||||
* As the specs are read in the from and until time values are compared to
|
||||
* present time. Only those keys which are valid are stored.
|
||||
*/
|
||||
int n2n_read_keyfile( n2n_cipherspec_t * specs, /* fill out this array of cipherspecs */
|
||||
size_t numspecs, /* number of slots in the array. */
|
||||
const char * ctrlfile_path ) /* path to control file */
|
||||
{
|
||||
/* Each line contains one cipherspec. */
|
||||
|
||||
int retval=0;
|
||||
FILE * fp=NULL;
|
||||
size_t idx=0;
|
||||
time_t now = time(NULL);
|
||||
|
||||
traceEvent( TRACE_DEBUG, "Reading '%s'\n", ctrlfile_path );
|
||||
|
||||
fp = fopen( ctrlfile_path, "r" );
|
||||
if ( fp )
|
||||
{
|
||||
/* Read the file a line a time with fgets. */
|
||||
char line[N2N_KEYFILE_LINESIZE];
|
||||
size_t lineNum=0;
|
||||
|
||||
while ( idx < numspecs )
|
||||
{
|
||||
n2n_cipherspec_t * k = &(specs[idx]);
|
||||
fgets( line, N2N_KEYFILE_LINESIZE, fp );
|
||||
++lineNum;
|
||||
|
||||
if ( strlen(line) > 1 )
|
||||
{
|
||||
if ( 0 == parseKeyLine( k, line ) )
|
||||
{
|
||||
if ( k->valid_until > now )
|
||||
{
|
||||
traceEvent( TRACE_INFO, " --> [%u] from %lu, until %lu, transform=%hu, data=%s\n",
|
||||
idx, k->valid_from, k->valid_until, k->t, k->opaque );
|
||||
|
||||
++retval;
|
||||
++idx;
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_INFO, " --X [%u] from %lu, until %lu, transform=%hu, data=%s\n",
|
||||
idx, k->valid_from, k->valid_until, k->t, k->opaque );
|
||||
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_WARNING, "Failed to decode line %u\n", lineNum );
|
||||
}
|
||||
}
|
||||
|
||||
if ( feof(fp) )
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
line[0]=0; /* this line has been consumed */
|
||||
}
|
||||
|
||||
fclose( fp);
|
||||
fp=NULL;
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_ERROR, "Failed to open '%s'\n", ctrlfile_path );
|
||||
retval = -1;
|
||||
}
|
||||
|
||||
return retval;
|
||||
}
|
117
legacy/n2n_keyfile.h
Normal file
117
legacy/n2n_keyfile.h
Normal file
|
@ -0,0 +1,117 @@
|
|||
/**
|
||||
* (C) 2007-18 - ntop.org and contributors
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not see see <http://www.gnu.org/licenses/>
|
||||
*
|
||||
*/
|
||||
|
||||
/** Key files
|
||||
*
|
||||
* Edge implements a very simple interface for getting instructions about
|
||||
* rolling keys.
|
||||
*
|
||||
* Key definitions are written as individual files in <transform>/<sa>.key. The
|
||||
* format of each key is a single line of hex nibbles as follows:
|
||||
*
|
||||
* 0102030405060708090a0b0c0d0e0f
|
||||
*
|
||||
* Any external key exchange mechanism can receive the key data write it into
|
||||
* the keyfiles.
|
||||
*
|
||||
* To control which keys are active at what times the key control file is
|
||||
* used. This is a single file which is periodically reread. It contains key
|
||||
* definitions in chronological order with one line per key definition as
|
||||
* follows:
|
||||
*
|
||||
* <valid_from> <valid_until> <transform> <opaque>
|
||||
*
|
||||
* edge reads the key control file periodically to get updates in policy. edge
|
||||
* holds a number of keys in memory. Data can be decoded if it was encoded by
|
||||
* any of the keys still in memory. By having at least 2 keys in memory it
|
||||
* allows for clock skew and transmission delay when encoder and decoder roll
|
||||
* keys at slightly different times. The amount of overlap in the valid time
|
||||
* ranges provides the tolerance to timing skews in the system.
|
||||
*
|
||||
* The keys have the same level of secrecy as any other user file. Existing
|
||||
* UNIX permission systems can be used to provide access controls.
|
||||
*
|
||||
*/
|
||||
|
||||
/** How Edge Uses The Key Schedule
|
||||
*
|
||||
* Edge provides state space for a number of transform algorithms. Each
|
||||
* transform uses its state space to store the SA information for its keys as
|
||||
* found in the key file. When a packet is received the transform ID is in
|
||||
* plain text. The packets is then sent to that transform for decoding. Each
|
||||
* transform can store its SA numbers differently (or not at all). The
|
||||
* transform code then finds the SA number, then finds the cipher (with key) in
|
||||
* the state space and uses this to decode the packet.
|
||||
*
|
||||
* To support this, as edge reads each key line, it passes it to the
|
||||
* appropriate transform to parse the line and store the SA information in its
|
||||
* state space.
|
||||
*
|
||||
* When encoding a packet, edge has several transforms and potentially valid
|
||||
* SAs to choose from. To keep track of which one to use for encoding edge does
|
||||
* its own book-keeping as each key line is passed to the transform code: it
|
||||
* stores a lookup of valid_from -> transform. When encoding a packet it then
|
||||
* just calls the transform with the best valid_from in the table. The
|
||||
* transform's own state space has all the SAs for its keys and the best of
|
||||
* those is chosen.
|
||||
*/
|
||||
|
||||
#if !defined( N2N_KEYFILE_H_ )
|
||||
#define N2N_KEYFILE_H_
|
||||
|
||||
|
||||
#include "n2n_wire.h"
|
||||
#include <time.h>
|
||||
|
||||
#define N2N_MAX_KEYSIZE 256 /* bytes */
|
||||
#define N2N_MAX_NUM_CIPHERSPECS 8
|
||||
#define N2N_KEYPATH_SIZE 256
|
||||
#define N2N_KEYFILE_LINESIZE 256
|
||||
|
||||
/** This structure stores an encryption cipher spec. */
|
||||
struct n2n_cipherspec
|
||||
{
|
||||
n2n_transform_t t; /* N2N_TRANSFORM_ID_xxx for this spec. */
|
||||
time_t valid_from; /* Start using the key at this time. */
|
||||
time_t valid_until; /* Key is valid if time < valid_until. */
|
||||
uint16_t opaque_size; /* Size in bytes of key. */
|
||||
uint8_t opaque[N2N_MAX_KEYSIZE];/* Key matter. */
|
||||
};
|
||||
|
||||
typedef struct n2n_cipherspec n2n_cipherspec_t;
|
||||
|
||||
|
||||
static const char * const DELIMITERS=" \t\n\r";
|
||||
|
||||
|
||||
/** @return number of cipherspec items filled. */
|
||||
int n2n_read_keyfile( n2n_cipherspec_t * specs, /* fill out this array of cipherspecs */
|
||||
size_t numspecs, /* number of slots in the array. */
|
||||
const char * ctrlfile_path ); /* path to control file */
|
||||
|
||||
int validCipherSpec( const n2n_cipherspec_t * k,
|
||||
time_t now );
|
||||
|
||||
ssize_t n2n_parse_hex( uint8_t * keyBuf,
|
||||
size_t keyMax,
|
||||
const char * textKey,
|
||||
size_t textLen );
|
||||
|
||||
/*----------------------------------------------------------------------------*/
|
||||
|
||||
#endif /* #if !defined( N2N_KEYFILE_H_ ) */
|
730
legacy/transform_aes.c
Normal file
730
legacy/transform_aes.c
Normal file
|
@ -0,0 +1,730 @@
|
|||
/**
|
||||
* (C) 2007-18 - ntop.org and contributors
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not see see <http://www.gnu.org/licenses/>
|
||||
*
|
||||
*/
|
||||
|
||||
#include "n2n.h"
|
||||
#include "n2n_transforms.h"
|
||||
|
||||
#if defined(N2N_HAVE_AES)
|
||||
|
||||
#include "openssl/aes.h"
|
||||
#include "openssl/sha.h"
|
||||
#ifndef _MSC_VER
|
||||
/* Not included in Visual Studio 2008 */
|
||||
#include <strings.h> /* index() */
|
||||
#endif
|
||||
|
||||
#define N2N_AES_NUM_SA 32 /* space for SAa */
|
||||
|
||||
#define N2N_AES_TRANSFORM_VERSION 1 /* version of the transform encoding */
|
||||
#define N2N_AES_IVEC_SIZE 32 /* Enough space for biggest AES ivec */
|
||||
|
||||
#define AES256_KEY_BYTES (256/8)
|
||||
#define AES192_KEY_BYTES (192/8)
|
||||
#define AES128_KEY_BYTES (128/8)
|
||||
|
||||
typedef unsigned char n2n_aes_ivec_t[N2N_AES_IVEC_SIZE];
|
||||
|
||||
struct sa_aes
|
||||
{
|
||||
n2n_cipherspec_t spec; /* cipher spec parameters */
|
||||
n2n_sa_t sa_id; /* security association index */
|
||||
AES_KEY enc_key; /* tx key */
|
||||
AES_KEY dec_key; /* tx key */
|
||||
AES_KEY iv_enc_key; /* key used to encrypt the IV */
|
||||
uint8_t iv_ext_val[AES128_KEY_BYTES]; /* key used to extend the random IV seed to full block size */
|
||||
};
|
||||
|
||||
typedef struct sa_aes sa_aes_t;
|
||||
|
||||
|
||||
/** Aes transform state data.
|
||||
*
|
||||
* With a key-schedule in place this will be populated with a number of
|
||||
* SAs. Each SA has a lifetime and some opque data. The opaque data for aes
|
||||
* consists of the SA number and key material.
|
||||
*
|
||||
*/
|
||||
struct transop_aes
|
||||
{
|
||||
ssize_t tx_sa;
|
||||
size_t num_sa;
|
||||
sa_aes_t sa[N2N_AES_NUM_SA];
|
||||
u_int8_t psk_mode;
|
||||
};
|
||||
|
||||
typedef struct transop_aes transop_aes_t;
|
||||
|
||||
static ssize_t aes_find_sa( const transop_aes_t * priv, const n2n_sa_t req_id );
|
||||
static int setup_aes_key(transop_aes_t *priv, const uint8_t *key, ssize_t key_size, size_t sa_num);
|
||||
|
||||
static int transop_deinit_aes( n2n_trans_op_t * arg )
|
||||
{
|
||||
transop_aes_t * priv = (transop_aes_t *)arg->priv;
|
||||
size_t i;
|
||||
|
||||
if ( priv )
|
||||
{
|
||||
/* Memory was previously allocated */
|
||||
for (i=0; i<N2N_AES_NUM_SA; ++i )
|
||||
{
|
||||
sa_aes_t * sa = &(priv->sa[i]);
|
||||
|
||||
sa->sa_id=0;
|
||||
}
|
||||
|
||||
priv->num_sa=0;
|
||||
priv->tx_sa=-1;
|
||||
|
||||
free(priv);
|
||||
}
|
||||
|
||||
arg->priv=NULL; /* return to fully uninitialised state */
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static size_t aes_choose_tx_sa( transop_aes_t * priv, const u_int8_t * peer_mac ) {
|
||||
return priv->tx_sa; /* set in tick */
|
||||
}
|
||||
|
||||
static ssize_t aes_choose_rx_sa( transop_aes_t * priv, const u_int8_t * peer_mac, ssize_t sa_rx) {
|
||||
if(!priv->psk_mode)
|
||||
return aes_find_sa(priv, sa_rx);
|
||||
else
|
||||
/* NOTE the sa_rx of the packet is ignored in this case */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* AES plaintext preamble */
|
||||
#define TRANSOP_AES_VER_SIZE 1 /* Support minor variants in encoding in one module. */
|
||||
#define TRANSOP_AES_SA_SIZE 4
|
||||
#define TRANSOP_AES_IV_SEED_SIZE 8
|
||||
#define TRANSOP_AES_PREAMBLE_SIZE (TRANSOP_AES_VER_SIZE + TRANSOP_AES_SA_SIZE + TRANSOP_AES_IV_SEED_SIZE)
|
||||
|
||||
/* AES ciphertext preamble */
|
||||
#define TRANSOP_AES_NONCE_SIZE 4
|
||||
|
||||
/* Return the best acceptable AES key size (in bytes) given an input keysize.
|
||||
*
|
||||
* The value returned will be one of AES128_KEY_BYTES, AES192_KEY_BYTES or
|
||||
* AES256_KEY_BYTES.
|
||||
*/
|
||||
static size_t aes_best_keysize(size_t numBytes)
|
||||
{
|
||||
if (numBytes >= AES256_KEY_BYTES )
|
||||
{
|
||||
return AES256_KEY_BYTES;
|
||||
}
|
||||
else if (numBytes >= AES192_KEY_BYTES)
|
||||
{
|
||||
return AES192_KEY_BYTES;
|
||||
}
|
||||
else
|
||||
{
|
||||
return AES128_KEY_BYTES;
|
||||
}
|
||||
}
|
||||
|
||||
static void set_aes_cbc_iv(sa_aes_t *sa, n2n_aes_ivec_t ivec, uint64_t iv_seed) {
|
||||
uint8_t iv_full[AES_BLOCK_SIZE];
|
||||
|
||||
/* Extend the seed to full block size via the fixed ext value */
|
||||
memcpy(iv_full, sa->iv_ext_val, sizeof(iv_seed)); // note: only 64bits used of 128 available
|
||||
memcpy(iv_full + sizeof(iv_seed), &iv_seed, sizeof(iv_seed));
|
||||
|
||||
/* Encrypt the IV with secret key to make it unpredictable.
|
||||
* As discussed in https://github.com/ntop/n2n/issues/72, it's important to
|
||||
* have an unpredictable IV since the initial part of the packet plaintext
|
||||
* can be easily reconstructed from plaintext headers and used by an attacker
|
||||
* to perform differential analysis.
|
||||
*/
|
||||
AES_ecb_encrypt(iv_full, ivec, &sa->iv_enc_key, AES_ENCRYPT);
|
||||
}
|
||||
|
||||
/** The aes packet format consists of:
|
||||
*
|
||||
* - a 8-bit aes encoding version in clear text
|
||||
* - a 32-bit SA number in clear text
|
||||
* - a 64-bit random IV seed
|
||||
* - ciphertext encrypted from a 32-bit nonce followed by the payload.
|
||||
*
|
||||
* [V|SSSS|II|nnnnDDDDDDDDDDDDDDDDDDDDD]
|
||||
* |<------ encrypted ------>|
|
||||
*/
|
||||
static int transop_encode_aes( n2n_trans_op_t * arg,
|
||||
uint8_t * outbuf,
|
||||
size_t out_len,
|
||||
const uint8_t * inbuf,
|
||||
size_t in_len,
|
||||
const uint8_t * peer_mac)
|
||||
{
|
||||
int len2=-1;
|
||||
transop_aes_t * priv = (transop_aes_t *)arg->priv;
|
||||
uint8_t assembly[N2N_PKT_BUF_SIZE] = {0};
|
||||
uint32_t * pnonce;
|
||||
|
||||
if ( (in_len + TRANSOP_AES_NONCE_SIZE) <= N2N_PKT_BUF_SIZE )
|
||||
{
|
||||
if ( (in_len + TRANSOP_AES_NONCE_SIZE + TRANSOP_AES_PREAMBLE_SIZE) <= out_len )
|
||||
{
|
||||
int len=-1;
|
||||
size_t idx=0;
|
||||
sa_aes_t * sa;
|
||||
size_t tx_sa_num = 0;
|
||||
uint64_t iv_seed = 0;
|
||||
uint8_t padding = 0;
|
||||
n2n_aes_ivec_t enc_ivec = {0};
|
||||
|
||||
/* The transmit sa is periodically updated */
|
||||
tx_sa_num = aes_choose_tx_sa( priv, peer_mac );
|
||||
|
||||
sa = &(priv->sa[tx_sa_num]); /* Proper Tx SA index */
|
||||
|
||||
traceEvent( TRACE_DEBUG, "encode_aes %lu with SA %lu.", in_len, sa->sa_id );
|
||||
|
||||
/* Encode the aes format version. */
|
||||
encode_uint8( outbuf, &idx, N2N_AES_TRANSFORM_VERSION );
|
||||
|
||||
/* Encode the security association (SA) number */
|
||||
encode_uint32( outbuf, &idx, sa->sa_id );
|
||||
|
||||
/* Generate and encode the IV seed.
|
||||
* Using two calls to rand() because RAND_MAX is usually < 64bit
|
||||
* (e.g. linux) and sometimes < 32bit (e.g. Windows).
|
||||
*/
|
||||
((uint32_t*)&iv_seed)[0] = rand();
|
||||
((uint32_t*)&iv_seed)[1] = rand();
|
||||
encode_buf(outbuf, &idx, &iv_seed, sizeof(iv_seed));
|
||||
|
||||
/* Encrypt the assembly contents and write the ciphertext after the SA. */
|
||||
len = in_len + TRANSOP_AES_NONCE_SIZE;
|
||||
|
||||
/* The assembly buffer is a source for encrypting data. The nonce is
|
||||
* written in first followed by the packet payload. The whole
|
||||
* contents of assembly are encrypted. */
|
||||
pnonce = (uint32_t *)assembly;
|
||||
*pnonce = rand();
|
||||
memcpy( assembly + TRANSOP_AES_NONCE_SIZE, inbuf, in_len );
|
||||
|
||||
/* Need at least one encrypted byte at the end for the padding. */
|
||||
len2 = ( (len / AES_BLOCK_SIZE) + 1) * AES_BLOCK_SIZE; /* Round up to next whole AES adding at least one byte. */
|
||||
padding = (len2-len);
|
||||
assembly[len2 - 1] = padding;
|
||||
traceEvent( TRACE_DEBUG, "padding = %u, seed = %016lx", padding, iv_seed );
|
||||
|
||||
set_aes_cbc_iv(sa, enc_ivec, iv_seed);
|
||||
|
||||
AES_cbc_encrypt( assembly, /* source */
|
||||
outbuf + TRANSOP_AES_PREAMBLE_SIZE, /* dest */
|
||||
len2, /* enc size */
|
||||
&(sa->enc_key), enc_ivec, AES_ENCRYPT );
|
||||
|
||||
len2 += TRANSOP_AES_PREAMBLE_SIZE; /* size of data carried in UDP. */
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_ERROR, "encode_aes outbuf too small." );
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_ERROR, "encode_aes inbuf too big to encrypt." );
|
||||
}
|
||||
|
||||
return len2;
|
||||
}
|
||||
|
||||
|
||||
/* Search through the array of SAs to find the one with the required ID.
|
||||
*
|
||||
* @return array index where found or -1 if not found
|
||||
*/
|
||||
static ssize_t aes_find_sa( const transop_aes_t * priv, const n2n_sa_t req_id )
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i=0; i < priv->num_sa; ++i)
|
||||
{
|
||||
const sa_aes_t * sa=NULL;
|
||||
|
||||
sa = &(priv->sa[i]);
|
||||
if (req_id == sa->sa_id)
|
||||
{
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
/* See transop_encode_aes for packet format */
|
||||
static int transop_decode_aes( n2n_trans_op_t * arg,
|
||||
uint8_t * outbuf,
|
||||
size_t out_len,
|
||||
const uint8_t * inbuf,
|
||||
size_t in_len,
|
||||
const uint8_t * peer_mac)
|
||||
{
|
||||
int len=0;
|
||||
transop_aes_t * priv = (transop_aes_t *)arg->priv;
|
||||
uint8_t assembly[N2N_PKT_BUF_SIZE];
|
||||
|
||||
if ( ( (in_len - TRANSOP_AES_PREAMBLE_SIZE) <= N2N_PKT_BUF_SIZE ) /* Cipher text fits in assembly */
|
||||
&& (in_len >= (TRANSOP_AES_PREAMBLE_SIZE + TRANSOP_AES_NONCE_SIZE) ) /* Has at least version, SA, iv seed and nonce */
|
||||
)
|
||||
{
|
||||
n2n_sa_t sa_rx;
|
||||
ssize_t sa_idx=-1;
|
||||
size_t rem=in_len;
|
||||
size_t idx=0;
|
||||
uint8_t aes_enc_ver=0;
|
||||
uint64_t iv_seed=0;
|
||||
|
||||
/* Get the encoding version to make sure it is supported */
|
||||
decode_uint8( &aes_enc_ver, inbuf, &rem, &idx );
|
||||
|
||||
if ( N2N_AES_TRANSFORM_VERSION == aes_enc_ver )
|
||||
{
|
||||
/* Get the SA number and make sure we are decrypting with the right one. */
|
||||
decode_uint32( &sa_rx, inbuf, &rem, &idx );
|
||||
|
||||
sa_idx = aes_choose_rx_sa(priv, peer_mac, sa_rx);
|
||||
|
||||
if ( sa_idx >= 0 )
|
||||
{
|
||||
sa_aes_t * sa = &(priv->sa[sa_idx]);
|
||||
|
||||
/* Get the IV seed */
|
||||
decode_buf((uint8_t *)&iv_seed, sizeof(iv_seed), inbuf, &rem, &idx);
|
||||
|
||||
traceEvent( TRACE_DEBUG, "decode_aes %lu with SA %lu and seed %016lx", in_len, sa->sa_id, iv_seed );
|
||||
|
||||
len = (in_len - TRANSOP_AES_PREAMBLE_SIZE);
|
||||
|
||||
if ( 0 == (len % AES_BLOCK_SIZE ) )
|
||||
{
|
||||
uint8_t padding;
|
||||
n2n_aes_ivec_t dec_ivec = {0};
|
||||
|
||||
set_aes_cbc_iv(sa, dec_ivec, iv_seed);
|
||||
|
||||
AES_cbc_encrypt( (inbuf + TRANSOP_AES_PREAMBLE_SIZE),
|
||||
assembly, /* destination */
|
||||
len,
|
||||
&(sa->dec_key),
|
||||
dec_ivec, AES_DECRYPT );
|
||||
|
||||
/* last byte is how much was padding: max value should be
|
||||
* AES_BLOCKSIZE-1 */
|
||||
padding = assembly[ len-1 ] & 0xff;
|
||||
|
||||
if ( len >= (padding + TRANSOP_AES_NONCE_SIZE))
|
||||
{
|
||||
/* strictly speaking for this to be an ethernet packet
|
||||
* it is going to need to be even bigger; but this is
|
||||
* enough to prevent segfaults. */
|
||||
traceEvent( TRACE_DEBUG, "padding = %u", padding );
|
||||
len -= padding;
|
||||
|
||||
len -= TRANSOP_AES_NONCE_SIZE; /* size of ethernet packet */
|
||||
|
||||
/* Step over 4-byte random nonce value */
|
||||
memcpy( outbuf,
|
||||
assembly + TRANSOP_AES_NONCE_SIZE,
|
||||
len );
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_WARNING, "UDP payload decryption failed." );
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_WARNING, "Encrypted length %d is not a multiple of AES_BLOCK_SIZE (%d)", len, AES_BLOCK_SIZE );
|
||||
len = 0;
|
||||
}
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Wrong security association; drop the packet as it is undecodable. */
|
||||
traceEvent( TRACE_ERROR, "decode_aes SA number %lu not found.", sa_rx );
|
||||
|
||||
/* REVISIT: should be able to load a new SA at this point to complete the decoding. */
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Wrong security association; drop the packet as it is undecodable. */
|
||||
traceEvent( TRACE_ERROR, "decode_aes unsupported aes version %u.", aes_enc_ver );
|
||||
|
||||
/* REVISIT: should be able to load a new SA at this point to complete the decoding. */
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_ERROR, "decode_aes inbuf wrong size (%ul) to decrypt.", in_len );
|
||||
}
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
struct sha512_keybuf {
|
||||
uint8_t enc_dec_key[AES256_KEY_BYTES]; /* The key to use for AES CBC encryption/decryption */
|
||||
uint8_t iv_enc_key[AES128_KEY_BYTES]; /* The key to use to encrypt the IV with AES ECB */
|
||||
uint8_t iv_ext_val[AES128_KEY_BYTES]; /* A value to extend the IV seed */
|
||||
}; /* size: SHA512_DIGEST_LENGTH */
|
||||
|
||||
/* NOTE: the caller should adjust priv->num_sa accordingly */
|
||||
static int setup_aes_key(transop_aes_t *priv, const uint8_t *key, ssize_t key_size, size_t sa_num) {
|
||||
sa_aes_t * sa = &(priv->sa[sa_num]);
|
||||
size_t aes_keysize_bytes;
|
||||
size_t aes_keysize_bits;
|
||||
struct sha512_keybuf keybuf;
|
||||
|
||||
/* Clear out any old possibly longer key matter. */
|
||||
memset( &(sa->enc_key), 0, sizeof(sa->enc_key) );
|
||||
memset( &(sa->dec_key), 0, sizeof(sa->dec_key) );
|
||||
memset( &(sa->iv_enc_key), 0, sizeof(sa->iv_enc_key) );
|
||||
memset( &(sa->iv_ext_val), 0, sizeof(sa->iv_ext_val) );
|
||||
|
||||
/* We still use aes_best_keysize (even not necessary since we hash the key
|
||||
* into the 256bits enc_dec_key) to let the users choose the degree of encryption.
|
||||
* Long keys will pick AES192 or AES256 with more robust but expensive encryption.
|
||||
*/
|
||||
aes_keysize_bytes = aes_best_keysize(key_size);
|
||||
aes_keysize_bits = 8 * aes_keysize_bytes;
|
||||
|
||||
/* Hash the main key to generate subkeys */
|
||||
SHA512(key, key_size, (u_char*)&keybuf);
|
||||
|
||||
/* setup of enc_key/dec_key, used for the CBC encryption */
|
||||
AES_set_encrypt_key(keybuf.enc_dec_key, aes_keysize_bits, &(sa->enc_key));
|
||||
AES_set_decrypt_key(keybuf.enc_dec_key, aes_keysize_bits, &(sa->dec_key));
|
||||
|
||||
/* setup of iv_enc_key and iv_ext_val, used for generating the CBC IV */
|
||||
AES_set_encrypt_key(keybuf.iv_enc_key, sizeof(keybuf.iv_enc_key) * 8, &(sa->iv_enc_key));
|
||||
memcpy(sa->iv_ext_val, keybuf.iv_ext_val, sizeof(keybuf.iv_ext_val));
|
||||
|
||||
traceEvent( TRACE_DEBUG, "transop_addspec_aes sa_id=%u, %u bits key=%s.\n",
|
||||
priv->sa[sa_num].sa_id, aes_keysize_bits, key);
|
||||
|
||||
return(0);
|
||||
}
|
||||
|
||||
/*
|
||||
* priv: pointer to transform state
|
||||
* keybuf: buffer holding the key
|
||||
* pstat: length of keybuf
|
||||
*/
|
||||
static void add_aes_key(transop_aes_t *priv, uint8_t *keybuf, ssize_t pstat) {
|
||||
setup_aes_key(priv, keybuf, pstat, priv->num_sa);
|
||||
++(priv->num_sa);
|
||||
}
|
||||
|
||||
static int transop_addspec_aes( n2n_trans_op_t * arg, const n2n_cipherspec_t * cspec )
|
||||
{
|
||||
int retval = 1;
|
||||
ssize_t pstat=-1;
|
||||
transop_aes_t * priv = (transop_aes_t *)arg->priv;
|
||||
uint8_t keybuf[N2N_MAX_KEYSIZE];
|
||||
|
||||
if ( priv->num_sa < N2N_AES_NUM_SA )
|
||||
{
|
||||
const char * op = (const char *)cspec->opaque;
|
||||
const char * sep = index( op, '_' );
|
||||
|
||||
if ( sep )
|
||||
{
|
||||
char tmp[256];
|
||||
size_t s;
|
||||
|
||||
s = sep - op;
|
||||
memcpy( tmp, cspec->opaque, s );
|
||||
tmp[s]=0;
|
||||
|
||||
s = strlen(sep+1); /* sep is the _ which might be immediately followed by NULL */
|
||||
|
||||
priv->sa[priv->num_sa].spec = *cspec;
|
||||
priv->sa[priv->num_sa].sa_id = strtoul(tmp, NULL, 10);
|
||||
|
||||
memset( keybuf, 0, N2N_MAX_KEYSIZE );
|
||||
pstat = n2n_parse_hex( keybuf, N2N_MAX_KEYSIZE, sep+1, s );
|
||||
if ( pstat > 0 )
|
||||
{
|
||||
add_aes_key(priv, keybuf, pstat);
|
||||
retval = 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_ERROR, "transop_addspec_aes : bad key data - missing '_'.\n");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_ERROR, "transop_addspec_aes : full.\n");
|
||||
}
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
static n2n_tostat_t transop_tick_aes( n2n_trans_op_t * arg, time_t now )
|
||||
{
|
||||
transop_aes_t * priv = (transop_aes_t *)arg->priv;
|
||||
size_t i;
|
||||
int found=0;
|
||||
n2n_tostat_t r;
|
||||
|
||||
memset( &r, 0, sizeof(r) );
|
||||
|
||||
traceEvent( TRACE_DEBUG, "transop_aes tick num_sa=%u now=%lu", priv->num_sa, now );
|
||||
|
||||
for ( i=0; i < priv->num_sa; ++i )
|
||||
{
|
||||
if ( 0 == validCipherSpec( &(priv->sa[i].spec), now ) )
|
||||
{
|
||||
time_t remaining = priv->sa[i].spec.valid_until - now;
|
||||
|
||||
traceEvent( TRACE_INFO, "transop_aes choosing tx_sa=%u (valid for %lu sec)", priv->sa[i].sa_id, remaining );
|
||||
priv->tx_sa=i;
|
||||
found=1;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_DEBUG, "transop_aes tick rejecting sa=%u %lu -> %lu",
|
||||
priv->sa[i].sa_id, priv->sa[i].spec.valid_from, priv->sa[i].spec.valid_until );
|
||||
}
|
||||
}
|
||||
|
||||
if ( 0==found)
|
||||
{
|
||||
traceEvent( TRACE_INFO, "transop_aes no keys are currently valid. Keeping tx_sa=%u", priv->tx_sa );
|
||||
}
|
||||
else
|
||||
{
|
||||
r.can_tx = 1;
|
||||
r.tx_spec.t = N2N_TRANSFORM_ID_AESCBC;
|
||||
r.tx_spec = priv->sa[priv->tx_sa].spec;
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
static n2n_tostat_t transop_tick_aes_psk(n2n_trans_op_t * arg, time_t now) {
|
||||
transop_aes_t * priv = (transop_aes_t *)arg->priv;
|
||||
n2n_tostat_t r;
|
||||
|
||||
memset(&r, 0, sizeof(r));
|
||||
|
||||
// Always tx
|
||||
r.can_tx = 1;
|
||||
r.tx_spec.t = N2N_TRANSFORM_ID_AESCBC;
|
||||
r.tx_spec = priv->sa[priv->tx_sa].spec;
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
int transop_aes_init( n2n_trans_op_t * ttt )
|
||||
{
|
||||
int retval = 1;
|
||||
transop_aes_t * priv = NULL;
|
||||
|
||||
if ( ttt->priv )
|
||||
{
|
||||
transop_deinit_aes( ttt );
|
||||
}
|
||||
|
||||
memset( ttt, 0, sizeof( n2n_trans_op_t ) );
|
||||
|
||||
priv = (transop_aes_t *) calloc(1, sizeof(transop_aes_t));
|
||||
|
||||
if ( NULL != priv )
|
||||
{
|
||||
size_t i;
|
||||
sa_aes_t * sa=NULL;
|
||||
|
||||
/* install the private structure. */
|
||||
ttt->priv = priv;
|
||||
priv->num_sa=0;
|
||||
priv->tx_sa=0; /* We will use this sa index for encoding. */
|
||||
priv->psk_mode = 0;
|
||||
|
||||
ttt->transform_id = N2N_TRANSFORM_ID_AESCBC;
|
||||
ttt->addspec = transop_addspec_aes;
|
||||
ttt->tick = transop_tick_aes; /* chooses a new tx_sa */
|
||||
ttt->deinit = transop_deinit_aes;
|
||||
ttt->fwd = transop_encode_aes;
|
||||
ttt->rev = transop_decode_aes;
|
||||
|
||||
for(i=0; i<N2N_AES_NUM_SA; ++i)
|
||||
{
|
||||
sa = &(priv->sa[i]);
|
||||
sa->sa_id=0;
|
||||
memset( &(sa->spec), 0, sizeof(n2n_cipherspec_t) );
|
||||
memset( &(sa->enc_key), 0, sizeof(sa->enc_key) );
|
||||
memset( &(sa->dec_key), 0, sizeof(sa->dec_key) );
|
||||
memset( &(sa->iv_enc_key), 0, sizeof(sa->iv_enc_key) );
|
||||
memset( &(sa->iv_ext_val), 0, sizeof(sa->iv_ext_val) );
|
||||
}
|
||||
|
||||
retval = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
memset( ttt, 0, sizeof(n2n_trans_op_t) );
|
||||
traceEvent( TRACE_ERROR, "Failed to allocate priv for aes" );
|
||||
}
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
/* Setup AES in pre-shared key mode */
|
||||
int transop_aes_setup_psk(n2n_trans_op_t *ttt,
|
||||
n2n_sa_t sa_num,
|
||||
uint8_t *encrypt_pwd,
|
||||
uint32_t encrypt_pwd_len) {
|
||||
int retval = 1;
|
||||
transop_aes_t *priv = (transop_aes_t *)ttt->priv;
|
||||
|
||||
if(ttt->priv) {
|
||||
/* Replace the tick function with the PSK version of it */
|
||||
ttt->tick = transop_tick_aes_psk;
|
||||
priv->psk_mode = 1;
|
||||
priv->num_sa=0;
|
||||
priv->tx_sa=0;
|
||||
|
||||
/* Setup the key to use for encryption/decryption */
|
||||
add_aes_key(priv, encrypt_pwd, encrypt_pwd_len);
|
||||
|
||||
retval = 0;
|
||||
} else
|
||||
traceEvent(TRACE_ERROR, "AES priv is not allocated");
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
#else /* #if defined(N2N_HAVE_AES) */
|
||||
|
||||
struct transop_aes
|
||||
{
|
||||
ssize_t tx_sa;
|
||||
};
|
||||
|
||||
typedef struct transop_aes transop_aes_t;
|
||||
|
||||
|
||||
static int transop_deinit_aes( n2n_trans_op_t * arg )
|
||||
{
|
||||
transop_aes_t * priv = (transop_aes_t *)arg->priv;
|
||||
|
||||
if ( priv )
|
||||
{
|
||||
free(priv);
|
||||
}
|
||||
|
||||
arg->priv=NULL; /* return to fully uninitialised state */
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int transop_encode_aes( n2n_trans_op_t * arg,
|
||||
uint8_t * outbuf,
|
||||
size_t out_len,
|
||||
const uint8_t * inbuf,
|
||||
size_t in_len )
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int transop_decode_aes( n2n_trans_op_t * arg,
|
||||
uint8_t * outbuf,
|
||||
size_t out_len,
|
||||
const uint8_t * inbuf,
|
||||
size_t in_len )
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int transop_addspec_aes( n2n_trans_op_t * arg, const n2n_cipherspec_t * cspec )
|
||||
{
|
||||
traceEvent( TRACE_DEBUG, "transop_addspec_aes AES not built into edge.\n");
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
static n2n_tostat_t transop_tick_aes( n2n_trans_op_t * arg, time_t now )
|
||||
{
|
||||
n2n_tostat_t r;
|
||||
|
||||
memset( &r, 0, sizeof(r) );
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
int transop_aes_init( n2n_trans_op_t * ttt )
|
||||
{
|
||||
int retval = 1;
|
||||
transop_aes_t * priv = NULL;
|
||||
|
||||
if ( ttt->priv )
|
||||
{
|
||||
transop_deinit_aes( ttt );
|
||||
}
|
||||
|
||||
memset( ttt, 0, sizeof( n2n_trans_op_t ) );
|
||||
|
||||
priv = (transop_aes_t *) malloc( sizeof(transop_aes_t) );
|
||||
|
||||
if ( NULL != priv )
|
||||
{
|
||||
/* install the private structure. */
|
||||
ttt->priv = priv;
|
||||
priv->tx_sa=0; /* We will use this sa index for encoding. */
|
||||
|
||||
ttt->transform_id = N2N_TRANSFORM_ID_AESCBC;
|
||||
ttt->addspec = transop_addspec_aes;
|
||||
ttt->tick = transop_tick_aes; /* chooses a new tx_sa */
|
||||
ttt->deinit = transop_deinit_aes;
|
||||
ttt->fwd = transop_encode_aes;
|
||||
ttt->rev = transop_decode_aes;
|
||||
|
||||
retval = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
memset( ttt, 0, sizeof(n2n_trans_op_t) );
|
||||
traceEvent( TRACE_ERROR, "Failed to allocate priv for aes" );
|
||||
}
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
int transop_aes_setup_psk(n2n_trans_op_t *ttt,
|
||||
n2n_sa_t sa_num,
|
||||
uint8_t *encrypt_pwd,
|
||||
uint32_t encrypt_pwd_len) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* #if defined(N2N_HAVE_AES) */
|
||||
|
467
legacy/transform_tf.c
Normal file
467
legacy/transform_tf.c
Normal file
|
@ -0,0 +1,467 @@
|
|||
/**
|
||||
* (C) 2007-18 - ntop.org and contributors
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not see see <http://www.gnu.org/licenses/>
|
||||
*
|
||||
*/
|
||||
|
||||
#include "n2n.h"
|
||||
#include "n2n_transforms.h"
|
||||
#include "twofish.h"
|
||||
#ifndef _MSC_VER
|
||||
/* Not included in Visual Studio 2008 */
|
||||
#include <strings.h> /* index() */
|
||||
#endif
|
||||
|
||||
#define N2N_TWOFISH_NUM_SA 32 /* space for SAa */
|
||||
|
||||
#define N2N_TWOFISH_TRANSFORM_VERSION 1 /* version of the transform encoding */
|
||||
|
||||
struct sa_twofish
|
||||
{
|
||||
n2n_cipherspec_t spec; /* cipher spec parameters */
|
||||
n2n_sa_t sa_id; /* security association index */
|
||||
TWOFISH * enc_tf; /* tx state */
|
||||
TWOFISH * dec_tf; /* rx state */
|
||||
};
|
||||
|
||||
typedef struct sa_twofish sa_twofish_t;
|
||||
|
||||
|
||||
/** Twofish transform state data.
|
||||
*
|
||||
* With a key-schedule in place this will be populated with a number of
|
||||
* SAs. Each SA has a lifetime and some opque data. The opaque data for twofish
|
||||
* consists of the SA number and key material.
|
||||
*
|
||||
*/
|
||||
struct transop_tf
|
||||
{
|
||||
ssize_t tx_sa;
|
||||
size_t num_sa;
|
||||
sa_twofish_t sa[N2N_TWOFISH_NUM_SA];
|
||||
};
|
||||
|
||||
typedef struct transop_tf transop_tf_t;
|
||||
|
||||
static int transop_deinit_twofish( n2n_trans_op_t * arg )
|
||||
{
|
||||
transop_tf_t * priv = (transop_tf_t *)arg->priv;
|
||||
size_t i;
|
||||
|
||||
if ( priv )
|
||||
{
|
||||
/* Memory was previously allocated */
|
||||
for (i=0; i<N2N_TWOFISH_NUM_SA; ++i )
|
||||
{
|
||||
sa_twofish_t * sa = &(priv->sa[i]);
|
||||
|
||||
TwoFishDestroy(sa->enc_tf); /* deallocate TWOFISH */
|
||||
sa->enc_tf=NULL;
|
||||
|
||||
TwoFishDestroy(sa->dec_tf); /* deallocate TWOFISH */
|
||||
sa->dec_tf=NULL;
|
||||
|
||||
sa->sa_id=0;
|
||||
}
|
||||
|
||||
priv->num_sa=0;
|
||||
priv->tx_sa=-1;
|
||||
|
||||
free(priv);
|
||||
}
|
||||
|
||||
arg->priv=NULL; /* return to fully uninitialised state */
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static size_t tf_choose_tx_sa( transop_tf_t * priv )
|
||||
{
|
||||
return priv->tx_sa; /* set in tick */
|
||||
}
|
||||
|
||||
#define TRANSOP_TF_VER_SIZE 1 /* Support minor variants in encoding in one module. */
|
||||
#define TRANSOP_TF_NONCE_SIZE 4
|
||||
#define TRANSOP_TF_SA_SIZE 4
|
||||
|
||||
/** The twofish packet format consists of:
|
||||
*
|
||||
* - a 8-bit twofish encoding version in clear text
|
||||
* - a 32-bit SA number in clear text
|
||||
* - ciphertext encrypted from a 32-bit nonce followed by the payload.
|
||||
*
|
||||
* [V|SSSS|nnnnDDDDDDDDDDDDDDDDDDDDD]
|
||||
* |<------ encrypted ------>|
|
||||
*/
|
||||
static int transop_encode_twofish( n2n_trans_op_t * arg,
|
||||
uint8_t * outbuf,
|
||||
size_t out_len,
|
||||
const uint8_t * inbuf,
|
||||
size_t in_len,
|
||||
const uint8_t * peer_mac)
|
||||
{
|
||||
int len=-1;
|
||||
transop_tf_t * priv = (transop_tf_t *)arg->priv;
|
||||
uint8_t assembly[N2N_PKT_BUF_SIZE];
|
||||
uint32_t * pnonce;
|
||||
|
||||
if ( (in_len + TRANSOP_TF_NONCE_SIZE) <= N2N_PKT_BUF_SIZE )
|
||||
{
|
||||
if ( (in_len + TRANSOP_TF_NONCE_SIZE + TRANSOP_TF_SA_SIZE + TRANSOP_TF_VER_SIZE) <= out_len )
|
||||
{
|
||||
size_t idx=0;
|
||||
sa_twofish_t * sa;
|
||||
size_t tx_sa_num = 0;
|
||||
|
||||
/* The transmit sa is periodically updated */
|
||||
tx_sa_num = tf_choose_tx_sa( priv );
|
||||
|
||||
sa = &(priv->sa[tx_sa_num]); /* Proper Tx SA index */
|
||||
|
||||
traceEvent( TRACE_DEBUG, "encode_twofish %lu with SA %lu.", in_len, sa->sa_id );
|
||||
|
||||
/* Encode the twofish format version. */
|
||||
encode_uint8( outbuf, &idx, N2N_TWOFISH_TRANSFORM_VERSION );
|
||||
|
||||
/* Encode the security association (SA) number */
|
||||
encode_uint32( outbuf, &idx, sa->sa_id );
|
||||
|
||||
/* The assembly buffer is a source for encrypting data. The nonce is
|
||||
* written in first followed by the packet payload. The whole
|
||||
* contents of assembly are encrypted. */
|
||||
pnonce = (uint32_t *)assembly;
|
||||
*pnonce = rand();
|
||||
memcpy( assembly + TRANSOP_TF_NONCE_SIZE, inbuf, in_len );
|
||||
|
||||
/* Encrypt the assembly contents and write the ciphertext after the SA. */
|
||||
len = TwoFishEncryptRaw( assembly, /* source */
|
||||
outbuf + TRANSOP_TF_VER_SIZE + TRANSOP_TF_SA_SIZE,
|
||||
in_len + TRANSOP_TF_NONCE_SIZE, /* enc size */
|
||||
sa->enc_tf);
|
||||
if ( len > 0 )
|
||||
{
|
||||
len += TRANSOP_TF_VER_SIZE + TRANSOP_TF_SA_SIZE; /* size of data carried in UDP. */
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_ERROR, "encode_twofish encryption failed." );
|
||||
}
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_ERROR, "encode_twofish outbuf too small." );
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_ERROR, "encode_twofish inbuf too big to encrypt." );
|
||||
}
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
|
||||
/* Search through the array of SAs to find the one with the required ID.
|
||||
*
|
||||
* @return array index where found or -1 if not found
|
||||
*/
|
||||
static ssize_t twofish_find_sa( const transop_tf_t * priv, const n2n_sa_t req_id )
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i=0; i < priv->num_sa; ++i)
|
||||
{
|
||||
const sa_twofish_t * sa=NULL;
|
||||
|
||||
sa = &(priv->sa[i]);
|
||||
if (req_id == sa->sa_id)
|
||||
{
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
/** The twofish packet format consists of:
|
||||
*
|
||||
* - a 8-bit twofish encoding version in clear text
|
||||
* - a 32-bit SA number in clear text
|
||||
* - ciphertext encrypted from a 32-bit nonce followed by the payload.
|
||||
*
|
||||
* [V|SSSS|nnnnDDDDDDDDDDDDDDDDDDDDD]
|
||||
* |<------ encrypted ------>|
|
||||
*/
|
||||
static int transop_decode_twofish( n2n_trans_op_t * arg,
|
||||
uint8_t * outbuf,
|
||||
size_t out_len,
|
||||
const uint8_t * inbuf,
|
||||
size_t in_len,
|
||||
const uint8_t * peer_mac)
|
||||
{
|
||||
int len=0;
|
||||
transop_tf_t * priv = (transop_tf_t *)arg->priv;
|
||||
uint8_t assembly[N2N_PKT_BUF_SIZE];
|
||||
|
||||
if ( ( (in_len - (TRANSOP_TF_VER_SIZE + TRANSOP_TF_SA_SIZE)) <= N2N_PKT_BUF_SIZE ) /* Cipher text fits in assembly */
|
||||
&& (in_len >= (TRANSOP_TF_VER_SIZE + TRANSOP_TF_SA_SIZE + TRANSOP_TF_NONCE_SIZE) ) /* Has at least version, SA and nonce */
|
||||
)
|
||||
{
|
||||
n2n_sa_t sa_rx;
|
||||
ssize_t sa_idx=-1;
|
||||
size_t rem=in_len;
|
||||
size_t idx=0;
|
||||
uint8_t tf_enc_ver=0;
|
||||
|
||||
/* Get the encoding version to make sure it is supported */
|
||||
decode_uint8( &tf_enc_ver, inbuf, &rem, &idx );
|
||||
|
||||
if ( N2N_TWOFISH_TRANSFORM_VERSION == tf_enc_ver )
|
||||
{
|
||||
/* Get the SA number and make sure we are decrypting with the right one. */
|
||||
decode_uint32( &sa_rx, inbuf, &rem, &idx );
|
||||
|
||||
sa_idx = twofish_find_sa(priv, sa_rx);
|
||||
if ( sa_idx >= 0 )
|
||||
{
|
||||
sa_twofish_t * sa = &(priv->sa[sa_idx]);
|
||||
|
||||
traceEvent( TRACE_DEBUG, "decode_twofish %lu with SA %lu.", in_len, sa_rx, sa->sa_id );
|
||||
|
||||
len = TwoFishDecryptRaw( (void *)(inbuf + TRANSOP_TF_VER_SIZE + TRANSOP_TF_SA_SIZE),
|
||||
assembly, /* destination */
|
||||
(in_len - (TRANSOP_TF_VER_SIZE + TRANSOP_TF_SA_SIZE)),
|
||||
sa->dec_tf);
|
||||
|
||||
if ( len > 0 )
|
||||
{
|
||||
/* Step over 4-byte random nonce value */
|
||||
len -= TRANSOP_TF_NONCE_SIZE; /* size of ethernet packet */
|
||||
|
||||
memcpy( outbuf,
|
||||
assembly + TRANSOP_TF_NONCE_SIZE,
|
||||
len );
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_ERROR, "decode_twofish decryption failed." );
|
||||
}
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Wrong security association; drop the packet as it is undecodable. */
|
||||
traceEvent( TRACE_ERROR, "decode_twofish SA number %lu not found.", sa_rx );
|
||||
|
||||
/* REVISIT: should be able to load a new SA at this point to complete the decoding. */
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Wrong security association; drop the packet as it is undecodable. */
|
||||
traceEvent( TRACE_ERROR, "decode_twofish unsupported twofish version %u.", tf_enc_ver );
|
||||
|
||||
/* REVISIT: should be able to load a new SA at this point to complete the decoding. */
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_ERROR, "decode_twofish inbuf wrong size (%ul) to decrypt.", in_len );
|
||||
}
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
static int transop_addspec_twofish( n2n_trans_op_t * arg, const n2n_cipherspec_t * cspec )
|
||||
{
|
||||
int retval = 1;
|
||||
ssize_t pstat=-1;
|
||||
transop_tf_t * priv = (transop_tf_t *)arg->priv;
|
||||
uint8_t keybuf[N2N_MAX_KEYSIZE];
|
||||
|
||||
if ( priv->num_sa < N2N_TWOFISH_NUM_SA )
|
||||
{
|
||||
const char * op = (const char *)cspec->opaque;
|
||||
#ifdef __ANDROID_NDK__
|
||||
const char *sep = strchr(op, '_');
|
||||
#else
|
||||
const char * sep = index( op, '_' );
|
||||
#endif // __ANDROID_NDK__
|
||||
|
||||
if ( sep )
|
||||
{
|
||||
char tmp[256];
|
||||
size_t s;
|
||||
|
||||
s = sep - op;
|
||||
memcpy( tmp, cspec->opaque, s );
|
||||
tmp[s]=0;
|
||||
|
||||
s = strlen(sep+1); /* sep is the _ which might be immediately followed by NULL */
|
||||
|
||||
priv->sa[priv->num_sa].spec = *cspec;
|
||||
priv->sa[priv->num_sa].sa_id = strtoul(tmp, NULL, 10);
|
||||
|
||||
pstat = n2n_parse_hex( keybuf, N2N_MAX_KEYSIZE, sep+1, s );
|
||||
if ( pstat > 0 )
|
||||
{
|
||||
priv->sa[priv->num_sa].enc_tf = TwoFishInit( keybuf, pstat);
|
||||
priv->sa[priv->num_sa].dec_tf = TwoFishInit( keybuf, pstat);
|
||||
|
||||
traceEvent( TRACE_DEBUG, "transop_addspec_twofish sa_id=%u data=%s.\n",
|
||||
priv->sa[priv->num_sa].sa_id, sep+1);
|
||||
|
||||
++(priv->num_sa);
|
||||
retval = 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_ERROR, "transop_addspec_twofish : bad key data - missing '_'.\n");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_ERROR, "transop_addspec_twofish : full.\n");
|
||||
}
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
static n2n_tostat_t transop_tick_twofish( n2n_trans_op_t * arg, time_t now )
|
||||
{
|
||||
transop_tf_t * priv = (transop_tf_t *)arg->priv;
|
||||
size_t i;
|
||||
int found=0;
|
||||
n2n_tostat_t r;
|
||||
|
||||
memset( &r, 0, sizeof(r) );
|
||||
|
||||
traceEvent( TRACE_DEBUG, "transop_tf tick num_sa=%u", priv->num_sa );
|
||||
|
||||
for ( i=0; i < priv->num_sa; ++i )
|
||||
{
|
||||
if ( 0 == validCipherSpec( &(priv->sa[i].spec), now ) )
|
||||
{
|
||||
time_t remaining = priv->sa[i].spec.valid_until - now;
|
||||
|
||||
traceEvent( TRACE_INFO, "transop_tf choosing tx_sa=%u (valid for %lu sec)", priv->sa[i].sa_id, remaining );
|
||||
priv->tx_sa=i;
|
||||
found=1;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
traceEvent( TRACE_DEBUG, "transop_tf tick rejecting sa=%u %lu -> %lu",
|
||||
priv->sa[i].sa_id, priv->sa[i].spec.valid_from, priv->sa[i].spec.valid_until );
|
||||
}
|
||||
}
|
||||
|
||||
if ( 0==found)
|
||||
{
|
||||
traceEvent( TRACE_INFO, "transop_tf no keys are currently valid. Keeping tx_sa=%u", priv->tx_sa );
|
||||
}
|
||||
else
|
||||
{
|
||||
r.can_tx = 1;
|
||||
r.tx_spec.t = N2N_TRANSFORM_ID_TWOFISH;
|
||||
r.tx_spec = priv->sa[priv->tx_sa].spec;
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
int transop_twofish_setup_psk( n2n_trans_op_t * ttt,
|
||||
n2n_sa_t sa_num,
|
||||
uint8_t * encrypt_pwd,
|
||||
uint32_t encrypt_pwd_len )
|
||||
{
|
||||
int retval = 1;
|
||||
transop_tf_t * priv = (transop_tf_t *)ttt->priv;
|
||||
|
||||
if(priv) {
|
||||
sa_twofish_t *sa;
|
||||
|
||||
priv->num_sa=1; /* There is one SA in the array. */
|
||||
priv->tx_sa=0;
|
||||
sa = &(priv->sa[priv->tx_sa]);
|
||||
sa->sa_id=sa_num;
|
||||
sa->spec.valid_until = 0x7fffffff;
|
||||
|
||||
/* This is a preshared key setup. Both Tx and Rx are using the same security association. */
|
||||
|
||||
sa->enc_tf = TwoFishInit(encrypt_pwd, encrypt_pwd_len);
|
||||
sa->dec_tf = TwoFishInit(encrypt_pwd, encrypt_pwd_len);
|
||||
|
||||
if ( (sa->enc_tf) && (sa->dec_tf) )
|
||||
retval = 0;
|
||||
else
|
||||
traceEvent( TRACE_ERROR, "transop_twofish_setup_psk" );
|
||||
} else
|
||||
traceEvent( TRACE_ERROR, "twofish priv is not allocated" );
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
int transop_twofish_init( n2n_trans_op_t * ttt )
|
||||
{
|
||||
int retval = 1;
|
||||
transop_tf_t * priv = NULL;
|
||||
|
||||
if ( ttt->priv )
|
||||
{
|
||||
transop_deinit_twofish( ttt );
|
||||
}
|
||||
|
||||
memset( ttt, 0, sizeof( n2n_trans_op_t ) );
|
||||
|
||||
priv = (transop_tf_t *) malloc( sizeof(transop_tf_t) );
|
||||
|
||||
if ( NULL != priv ) {
|
||||
size_t i;
|
||||
sa_twofish_t * sa=NULL;
|
||||
|
||||
/* install the private structure. */
|
||||
ttt->priv = priv;
|
||||
priv->num_sa=0;
|
||||
priv->tx_sa=0; /* We will use this sa index for encoding. */
|
||||
|
||||
ttt->transform_id = N2N_TRANSFORM_ID_TWOFISH;
|
||||
ttt->addspec = transop_addspec_twofish;
|
||||
ttt->tick = transop_tick_twofish; /* chooses a new tx_sa */
|
||||
ttt->deinit = transop_deinit_twofish;
|
||||
ttt->fwd = transop_encode_twofish;
|
||||
ttt->rev = transop_decode_twofish;
|
||||
|
||||
for(i=0; i<N2N_TWOFISH_NUM_SA; ++i)
|
||||
{
|
||||
sa = &(priv->sa[i]);
|
||||
sa->sa_id=0;
|
||||
memset( &(sa->spec), 0, sizeof(n2n_cipherspec_t) );
|
||||
sa->enc_tf=NULL;
|
||||
sa->dec_tf=NULL;
|
||||
}
|
||||
|
||||
retval = 0;
|
||||
} else {
|
||||
memset( ttt, 0, sizeof(n2n_trans_op_t) );
|
||||
traceEvent( TRACE_ERROR, "Failed to allocate priv for twofish" );
|
||||
}
|
||||
|
||||
return retval;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue